topoWX¶
This downloads topoWX data using tsgettoolbox
[1]:
from tsgettoolbox import tsgettoolbox as tsget
[2]:
help(tsget.topowx_daily)
Help on function topowx_daily in module tsgettoolbox.functions.topowx:
topowx_daily(lat, lon, variables=None, start_date=None, end_date=None)
US 30arcsecond 1948- M:Topoclimatic Daily Air Temperature Dataset.
institution: USGS
history: Created on: 2017-07-06, dataset version 2016.1
references: http://dx.doi.org/10.1002/joc.4127
, http://dx.doi.org/10.1002/2014GL062803
, http://dx.doi.org/10.1175/JAMC-D-15-0276.1
comment: The TopoWx ('Topography Weather') gridded dataset contains daily
30-arcsec resolution (~800-m resolution; WGS84) interpolations of minimum
and maximum topoclimatic air temperature for the conterminous U.S. Using
both DEM-based variables and MODIS land skin temperature as predictors of
air temperature, interpolation procedures include moving window regression
kriging and geographically weighted regression. To avoid artificial climate
trends, all input station data are homogenized using the GHCN/USHCN
Pairwise Homogenization Algorithm
(http://www.ncdc.noaa.gov/oa/climate/research/ushcn/#phas).
Conventions: CF-1.6
source: TopoWx software version 1.3.0 (https://github.com/jaredwo/topowx)
license: This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License
(https://creativecommons.org/licenses/by-sa/4.0/).
Metadata_Conventions: Unidata Dataset Discovery v1.0
summary: The TopoWx ('Topography Weather') dataset contains historical
30-arcsec resolution (~800-m) interpolations of daily minimum and maximum
topoclimatic air temperature for the conterminous U.S. Using both DEM-based
variables and MODIS land skin temperature as predictors of air temperature,
interpolation procedures include moving window regression kriging and
geographically weighted regression. To avoid artificial climate trends, all
input station data are homogenized using the GHCN/USHCN Pairwise
Homogenization Algorithm
(http://www.ncdc.noaa.gov/oa/climate/research/ushcn/#phas). The following
data are available in this archive: 1948-2016 daily and monthly minimum and
maximum temperature, and 1981-2010 monthly normals for minimum and maximum
temperature with corresponding uncertainty (kriging prediction error).
Ongoing annual updates will regenerate the entire dataset incorporating
both new observations and model enhancements. This will result in
a continuously improved dataset. However, different versions of TopoWx will
be incompatible. For instance, data from the original 1948-2012 version
should not be mixed with data from the new 1948-2016 version.
keywords: maximum temperature, minimum temperature, land skin temperature,
MODIS, kriging, homogenization, gridded meteorological data
id: topowx
naming_authority: cida.usgs.gov
cdm_data_type: Grid
date_created: 2017-07-06
creator_name: Jared Oyler
creator_url: http://www.scrimhub.org
creator_email: jared.oyler@psu.edu
publisher_name: Office of Water Information
publisher_url: https://owi.usgs.gov/
publisher_email: wwatkins@usgs.gov
date_issued: 2017-08-18
project: TopoWx: Topoclimatic Daily Air Temperature Dataset for the
Conterminous United States
processing_level: Historical Gridded Meteorological Data
acknowledgement: Please cite this data as: Oyler JW, Ballantyne A, Jencso
K, Sweet M, Running S. Creating a Topoclimatic Daily Air Temperature
Dataset for the Conterminous United States using Homogenized Station Data
and Remotely Sensed Land Skin Temperature. International Journal of
Climatology. http://dx.doi.org/10.1002/joc.4127
geospatial_lat_min: 24.1
geospatial_lat_max: 51.2
geospatial_lon_min: -125
geospatial_lon_max: -99.7
time_coverage_start: 1948-01-01T00:00:00
time_coverage_end: 2016-12-31T00:00:00
time_coverage_resolution: P1D
Parameters
----------
lat
The latitude of the point. North hemisphere is positive from 0 to 90. South
hemisphere is negative from 0 to -90.
lon
The longitude of the point. Western hemisphere (west of Greenwich Prime
Meridian) is negative 0 to -180. The eastern hemisphere (east of the Greenwich
Prime Meridian) is positive 0 to 180.
variables : str
At the command line can supply a comma separated list of variable
names. Using the Python API needs to be a Python list of strings.
The current list of available topowx variables are daily minimum
temperature (tmin) and daily maximum temperature (tmax).
start_date : str
[optional, defaults to first date in time-series, input filter]
The start_date of the series in ISOdatetime format, or 'None'
for beginning.
end_date : str
[optional, defaults to last date in time-series, input filter]
The end_date of the series in ISOdatetime format, or 'None' for
end.
Monthly data¶
This is a sample code to download daily data
[3]:
topowx = tsget.topowx(lat=30, lon=-100, start_date="2014-01-01", end_date="2015-02-01")
[4]:
topowx
[4]:
daily_maximum_temperature:degC | daily_minimum_temperature:degC | |
---|---|---|
2014-01-16 | 15.27 | -1.87 |
2014-02-15 | 17.14 | 1.42 |
2014-03-16 | 20.89 | 4.75 |
2014-04-16 | 25.56 | 10.62 |
2014-05-16 | 28.47 | 14.71 |
2014-06-16 | 30.88 | 20.04 |
2014-07-16 | 32.61 | 20.55 |
2014-08-16 | 33.63 | 20.29 |
2014-09-16 | 29.63 | 18.60 |
2014-10-16 | 27.02 | 13.44 |
2014-11-16 | 17.89 | 4.10 |
2014-12-16 | 15.36 | 4.73 |
2015-01-16 | 13.44 | -0.32 |
Daily data¶
This is a sample code to download daily data
[5]:
topowx_daily = tsget.topowx_daily(
lat=30, lon=-100, start_date="2014-01-01", end_date="2015-02-01"
)
[6]:
topowx_daily
[6]:
daily_maximum_temperature:degC | daily_minimum_temperature:degC | |
---|---|---|
2014-01-01 12:00:00 | 16.08 | -1.42 |
2014-01-02 12:00:00 | 14.13 | -1.45 |
2014-01-03 12:00:00 | 11.13 | -5.06 |
2014-01-04 12:00:00 | 16.52 | -2.31 |
2014-01-05 12:00:00 | 13.42 | -0.69 |
... | ... | ... |
2015-01-27 12:00:00 | 24.49 | 2.29 |
2015-01-28 12:00:00 | 24.96 | 3.40 |
2015-01-29 12:00:00 | 22.62 | 5.27 |
2015-01-30 12:00:00 | 12.38 | 5.21 |
2015-01-31 12:00:00 | 13.74 | 5.57 |
396 rows × 2 columns