Tests Test Coverage Latest release BSD-3 clause license tstoolbox downloads PyPI - Python Version

Python API Function Summary

tstoolbox.tstoolbox.accumulate([input_ts, ...])

Calculate accumulating statistics.

tstoolbox.tstoolbox.add_trend(start_offset, ...)

Add a trend.

tstoolbox.tstoolbox.aggregate([input_ts, ...])

Take a time series and aggregate to specified frequency.

tstoolbox.tstoolbox.calculate_fdc([...])

Return the frequency distribution curve.

tstoolbox.tstoolbox.calculate_kde([...])

Return the kernel density estimation (KDE) curve.

tstoolbox.tstoolbox.clip([input_ts, ...])

Return a time-series with values limited to [a_min, a_max].

tstoolbox.tstoolbox.convert([input_ts, ...])

Convert values of a time series by applying a factor and offset.

tstoolbox.tstoolbox.convert_index(to[, ...])

Convert datetime to/from Julian dates from different epochs.

tstoolbox.tstoolbox.convert_index_to_julian([...])

DEPRECATED: Use convert_index instead.

tstoolbox.tstoolbox.converttz(fromtz, totz)

Convert the time zone of the index.

tstoolbox.tstoolbox.correlation(lags[, ...])

Develop a correlation between time-series and potentially lags.

tstoolbox.tstoolbox.createts([input_ts, ...])

Create empty time series, optionally fill with a value.

tstoolbox.tstoolbox.date_offset(intervals, ...)

Apply a date offset to a time-series index.

tstoolbox.tstoolbox.date_slice([input_ts, ...])

Print out data to the screen between start_date and end_date.

tstoolbox.tstoolbox.describe([input_ts, ...])

Print out statistics for the time-series.

tstoolbox.tstoolbox.dtw([input_ts, columns, ...])

Dynamic Time Warping.

tstoolbox.tstoolbox.equation(equation_str[, ...])

Apply <equation_str> to the time series data.

tstoolbox.tstoolbox.ewm_window([input_ts, ...])

Calculate exponential weighted functions.

tstoolbox.tstoolbox.expanding_window([...])

Calculate an expanding window statistic.

tstoolbox.tstoolbox.fill([input_ts, method, ...])

Fill missing values (NaN) with different methods.

tstoolbox.tstoolbox.filter(filter_types, ...)

Apply different filters to the time-series.

tstoolbox.tstoolbox.fit(method[, ...])

Fit model to data.

tstoolbox.tstoolbox.gof([obs_col, sim_col, ...])

Will calculate goodness of fit statistics between two time-series.

tstoolbox.tstoolbox.lag(lags[, input_ts, ...])

Create a series of lagged time-series.

tstoolbox.tstoolbox.normalization([...])

Return the normalization of the time series.

tstoolbox.tstoolbox.pca([input_ts, columns, ...])

Return the principal components analysis of the time series.

tstoolbox.tstoolbox.pct_change([input_ts, ...])

Return the percent change between times.

tstoolbox.tstoolbox.peak_detection([...])

Peak and valley detection.

tstoolbox.tstoolbox.pick(columns[, ...])

Will pick a column or list of columns from input [DEPRECATED].

tstoolbox.tstoolbox.plot([input_ts, ...])

Plot data.

tstoolbox.tstoolbox.rank([input_ts, ...])

Compute numerical data ranks (1 through n) along axis.

tstoolbox.tstoolbox.read(*filenames[, ...])

Combine time-series from different sources into single dataset.

tstoolbox.tstoolbox.regression(method, ...)

Regression of one or more time-series or indices to a time-series.

tstoolbox.tstoolbox.remove_trend([input_ts, ...])

Remove a 'trend'.

tstoolbox.tstoolbox.replace(from_values, ...)

Return a time-series replacing values with others.

tstoolbox.tstoolbox.rolling_window(statistic)

Calculate a rolling window statistic.

tstoolbox.tstoolbox.stack([input_ts, ...])

Return the stack of the input table.

tstoolbox.tstoolbox.stdtozrxp([input_ts, ...])

Print out data to the screen in a WISKI ZRXP format.

tstoolbox.tstoolbox.tstopickle(filename[, ...])

Pickle the data into a Python pickled file.

tstoolbox.tstoolbox.unstack([column_names, ...])

Return the unstack of the input table.