tstoolbox.tstoolbox.rank(input_ts='-', columns=None, start_date=None, end_date=None, dropna='no', skiprows=None, index_type='datetime', names=None, clean=False, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False, print_input=False, float_format='%g', source_units=None, target_units=None, round_index=None)

Compute numerical data ranks (1 through n) along axis.

Equal values are assigned a rank that is the average of the ranks of those values

  • axis

    [optional, default is 0]

    0 or ‘index’ for rows. 1 or ‘columns’ for columns. Index to direct ranking.

  • method (str) –

    [optional, default is ‘average’]

    method argument



    average rank of group


    lowest rank in group


    highest rank in group


    ranks assigned in order they appear in the array


    like ‘min’, but rank always increases by 1 between groups

  • numeric_only

    [optional, default is None]

    Include only float, int, boolean data. Valid only for DataFrame or Panel objects.

  • na_option (str) –

    [optional, default is ‘keep’]

    na_option argument



    leave NA values where they are


    smallest rank if ascending


    smallest rank if descending

  • ascending

    [optional, default is True]

    False ranks by high (1) to low (N)

  • pct

    [optional, default is False]

    Computes percentage rank of data.

  • input_ts (str) –

    [optional, required if using Python API, default is ‘-‘ (stdin)]

    Whether from a file or standard input, data requires a header of column names. The default header is the first line of the input, but this can be changed using the ‘skiprows’ option.

    Most separators will be automatically detected. Most common date formats can be used, but the closer to ISO 8601 date/time standard the better.

    Command line:

    | --input_ts=filename.csv | to read 'filename.csv' |
    | --input_ts='-'          | to read from standard  |
    |                         | input (stdin).         |
    In many cases it is better to use redirection rather that use
    `--input_ts=filename.csv`.  The following are identical:
    From a file:
        command subcmd --input_ts=filename.csv
    From standard input:
        command subcmd --input_ts=- < filename.csv
    The BEST way since you don't have to include `--input_ts=-` because
    that is the default:
        command subcmd < filename.csv
    Can also combine commands by piping:
        command subcmd < filename.csv | command subcmd1 > fileout.csv

    As Python Library:

    You MUST use the `input_ts=...` option where `input_ts` can be one
    of a [pandas DataFrame, pandas Series, dict, tuple,
    list, StringIO, or file name].
    If result is a time series, returns a pandas DataFrame.

  • columns

    [optional, defaults to all columns, input filter]

    Columns to select out of input. Can use column names from the first line header or column numbers. If using numbers, column number 1 is the first data column. To pick multiple columns; separate by commas with no spaces. As used in tstoolbox pick command.

    This solves a big problem so that you don’t have to create a data set with a certain order, you can rearrange columns when data is read in.

  • start_date (str) –

    [optional, defaults to first date in time-series, input filter]

    The start_date of the series in ISOdatetime format, or ‘None’ for beginning.

  • end_date (str) –

    [optional, defaults to last date in time-series, input filter]

    The end_date of the series in ISOdatetime format, or ‘None’ for end.

  • dropna (str) –

    [optional, defauls it ‘no’, input filter]

    Set dropna to ‘any’ to have records dropped that have NA value in any column, or ‘all’ to have records dropped that have NA in all columns. Set to ‘no’ to not drop any records. The default is ‘no’.

  • skiprows (list-like or integer or callable) –

    [optional, default is None which will infer header from first line, input filter]

    Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

    If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be

    lambda x: x in [0, 2].

  • index_type (str) –

    [optional, default is ‘datetime’, output format]

    Can be either ‘number’ or ‘datetime’. Use ‘number’ with index values that are Julian dates, or other epoch reference.

  • names

    [optional, default is None, input filter]

    If None, the column names are taken from the first row after ‘skiprows’ from the input dataset.

  • clean

    [optional, default is False, input filter]

    The ‘clean’ command will repair an index, removing duplicate index values and sorting.

  • print_input

    [optional, default is False, output format]

    If set to ‘True’ will include the input columns in the output table.

  • float_format

    [optional, output format]

    Format for float numbers.

  • source_units

    [optional, default is None, transformation]

    If unit is specified for the column as the second field of a ‘:’ delimited column name, then the specified units and the ‘source_units’ must match exactly.

    Any unit string compatible with the ‘pint’ library can be used.

  • target_units

    [optional, default is None, transformation]

    The main purpose of this option is to convert units from those specified in the header line of the input into ‘target_units’.

    The units of the input time-series or values are specified as the second field of a ‘:’ delimited name in the header line of the input or in the ‘source_units’ keyword.

    Any unit string compatible with the ‘pint’ library can be used.

    This option will also add the ‘target_units’ string to the column names.

  • round_index

    [optional, default is None which will do nothing to the index, output format]

    Round the index to the nearest time point. Can significantly improve the performance since can cut down on memory and processing requirements, however be cautious about rounding to a very course interval from a small one. This could lead to duplicate values in the index.

  • tablefmt (str) –

    [optional, default is ‘csv’, output format]

    The table format. Can be one of ‘csv’, ‘tsv’, ‘plain’, ‘simple’, ‘grid’, ‘pipe’, ‘orgtbl’, ‘rst’, ‘mediawiki’, ‘latex’, ‘latex_raw’ and ‘latex_booktabs’.